다이나믹 프로그래밍_개미 전사
문제
note
개미 전사는 부족한 식량을 충당하고자 메뚜기 마을의 식량창고를 몰래 공격하려고 한다. 메뚜기 마을에는 여러 개의 식량창고가 있는데 식량창고는 일직선으로 이어져 있다. 각 식량창고에는 정해진 수의 식량을 저장하고 있으며 개미 전사는 식량창고를 선택적으로 약탈하여 식량을 빼앗을 예정이다. 이때 메뚜기 정찰병들은 일직선상에 존재하는 식량창고 중에서 서로 인접한 식량창고가 공격받으면 바로 알아챌 수 있다. 따라서 개미 전사가 정찰병에게 들키지 않고 식량창고를 약탈하기 위해서는 최소한 한 칸 이상 떨어진 식량창고를 약탈해야 한다. 예를 들어 식량창고 4개가 다음과 같이 존재한다고 가정하자.
{1, 3, 1, 5}
이 때 개미 전사는 두 번째 식량창고와 네 번째 식량창고를 선택했을 때 최댓값인 총 8개의 식량을 빼앗을 수 있다. 개미 전사는 식량창고가 이렇게 일직선상일 때 최대한 많은 식량을 얻기를 원한다. 개미 전사를 위해 식량창고 N개에 대한 정보가 주어졌을 때 얻을 수 있는 식량의 최댓값을 구하는 프로그램을 작성하시오.
입력 조건
- 첫째 줄에 식량창고의 개수 N이 주어진다.
(3 <= N <= 100)
- 둘째 줄에 공백으로 구분되어 각 식량창고에 저장된 식량의 개수 K가 주어진다.
(0 <= K <= 1,000)
출력 조건
- 첫째 줄에 개미 전사가 얻을 수 있는 식량의 최댓값을 출력하시오.
입력 예시
4
1 3 1 5
출력 예시
8
동빈나 풀이
n = int(input())
array = list(map(int, input().split()))
# 앞서 계산된 결과를 저장하기 위한 DP 테이블 초기화
d = [0] * 100
# 다이나믹 프로그래밍 진행 (보텀업)
d[0] = array[0]
d[1] = max(array[0], array[1])
for i in range(2, n):
d[i] = max(d[i - 1], d[i - 2] + array[i])
print(d[n - 1])